

The PUEAA Working Paper series disseminates preliminary results of research work on the Asia-Africa
region with the aim of fostering the exchange and debate of ideas. The contents of the Working Papers, as well
as the conclusions derived from them, are the sole responsibility of the authors and do not necessarily reflect
those of the University Program of Studies on Asia and Africa (PUEAA).

All titles are available on the PUEAA website: http://pueaa.unam.mx/observatorio-asia-africa/working-paper

Working Paper PUEAA No. 3. Parallel Processing and Parallelizing Compilation Techniques for "Green
Computing"

DOI https://doi.org/10.22201/pueaa.001r.2022

Publication Date January 2022

DR© 2022. Universidad Nacional Autónoma de México

Programa Universitario de Estudios sobre Asia y África

Calle de Filosofía y Letras 88

04360, Copilco Universidad

Coyoacán, Ciudad de México

This issue was edited by María del Carmen Uribe Rangel. Cover design and illustration: Yussef A. Galicia
Galicia. Editorial support: Lesly Abigail Olivares Quintana and María Fernanda Ortiz Castañeda.

Partial or total reproduction by any means is forbidden without written authorization from the owners of the
patrimonial rights.

Made in Mexico / Hecho en México

Parallel Processing and Parallelizing
Compilation Techniques for “Green Computing”

Yasutaka Wada

Resumen

La cuarta revolución tecnológica ha supuesto un gran avance en los procesos de fabricación y las comu-
nicaciones humanas. Si bien los procesadores se han vuelto cada vez más eficientes, tanto en velocidad,
capacidad y en consumo de energía, su funcionalidad respecto a este último punto aún debe mejorar. Las
más recientes innovaciones representan una oportunidad para crear una “computación verde” y no solo
electrónicos y softwares más amigables con el ambiente, sino también usar su nueva eficiencia para mejorar
nuestras actividades diarias, así como los diseños de nuestras mismas ciudades para volverlas más susten-
tables con el ambiente. Estos nuevos sistemas computarizados deberán ser aplicados también conforme a
los factores socioeconómicos que deben ser tomados en cuenta para poder ser modificados en favor de la
sostenibilidad y la eficiencia.

Abstract

The fourth technological revolution has brought great advances in manufacturing processes and human
communications. Although processors have become increasingly efficient, both in speed, capacity and
energy consumption, their functionality regarding this last point has yet to improve. The latest innovations
represent an opportunity to create "green computing" and not only more environmentally friendly
electronics and software, but also to use their new efficiency to improve our daily activities, as well as the
designs of our cities themselves to make them more environmentally sustainable. These new computerized
systems must also be applied in accordance with the socioeconomic factors that must be taken into account
in order to be modified in favor of sustainability and efficiency.

11

Introduction

Most of the current processors include functionalities such as DVFS (dynamic voltage/
frequency scaling), clock gating (clock signal supply control), and power gating (power
supply control); however, there are trade-offs between their performances and power
consumption. Hence, if the power consumption of a computer system is reduced, its
performance decreases, in general. Our approaches for utilizing the functionalities based
on parallel processing consider cooperation between the software and hardware. The
parallel processing technique significantly reduces the execution time of a user application,
while distributing the computational tasks in the application to the processor cores in the
system, considering the dependencies and task execution order. This speedup enables the
selection of the trade-off between the power and performance; DVFS, power gating, and
clock gating can be applied for minimizing the power consumption to execute the application
with the required performance. These types of software optimization/parallelization
approaches render it possible to completely utilize the hardware functionalities. At times,
application optimization and parallelization can broaden the gap between the given power
budget and the actual power consumption of a computer system. Hardware overprovisio-
ning, which involves the preparation of more hardware than the given power supply can
drive, is one of the solutions to this problem. To make this type of computer system, we
need to control the system so that it does not consume more power than the given budget.
Software techniques that appropriately assign the power budget to each component in the
system will play an indispensable role in future computers.

Another aspect of “Green Computing” is taking advantage of the high-performance
computational power achieved using parallel processing techniques to realize smarter
cities. Although our daily activities consume natural resources, green high-performance
computing platforms can provide more efficient social systems, conserving more resources
and providing more value than the system consumes. Currently, there are many small
computer systems, such as smartphones and sensors, and it is no longer impossible to connect
them with platforms to use data and information obtained all over the city. By integrating
such high-performance computer platforms with social systems, we believe that we can
make safe, good-for-living, and disaster-resistant cities.

22

This paper surveys and introduces our research effort and ongoing research projects in
the field of high-performance computing (Wada et al., 2011) (Shimaoka et al., 2015)
(Inadomi et al., 2015) (Wada et al., 2018) (Wada, 2017) green computing (Hayashi et al., 2012)
(Wada et al., 2015) (Wada, 2018), and smart cities (Shimaoka et al., 2015) (Samra et al., 2015).
These research activities are mainly focused on improving the energy efficiency of computer
systems for completely utilizing the given power to contribute toward the preservation of
the global “environment,” and improve the computation performance itself to contribute
toward the human society “environment.” Although parallel processing is a key technology
to realize the above mentioned techniques, the development of parallel applications at times
involves considerable cost and effort by the programmers and users. Moreover, additional
cost and effort are required to optimize the applications for better performance and lower
power consumption. To ease these demands of parallel programming, we have been researching
automatic parallelization techniques, task scheduling/assignment algorithms, and a program
compilation framework that enables parallelization and power-efficiency optimization
simultaneously. Utilizing this compilation framework, we can achieve high performance
along with better energy efficiency with minimal user/programmer effort. Furthermore,
this paper presents the performance improvement that can be achieved with parallel
processing for smarter cities through certain example applications.

The rest of this paper is organized as follows: Section 2 discusses parallel processing
techniques with automatic parallelization for homogeneous and heterogeneous parallel
computer systems. Section 3 describes our power reduction and power management
methodologies with parallel processing techniques. Section 4 introduces our research effort
and ongoing research project for the development of smarter and sustainable cities regarding
computer systems. Finally, Section 5 concludes this paper.

33

Parallelizing Compilation for Effective Performance

Figure 1. Parallelizing Compiler

Source: Own elaboration.

Currently, the software that runs on computer systems includes various applications such as
autonomous driving, artificial intelligence, big data processing, and virtual reality. Hence,
massive computational power is required, with an ever increasing demand. Previously,
computer-system performance was mainly improved by improving a single thread perfor-
mance and the processor clock frequency. However, now there is almost no room for impro-
ving the processor clock frequency and single thread performance due to the difficulty
involved in system cooling and the complexity of the processor core design.

To manage such problems in computer system performance, most of the current computer
systems, from embedded systems to supercomputers, employ multiple processors and/or
multicore processors that utilize numerous transistors on ICs for improving the system
performance. In such parallel computer systems, it is necessary to parallelize applications to
obtain sufficient performance. Although parallel processing is an essential technique to
maximize computer- system performance, the development of parallel applications is
expensive and time consuming. Further, it is required to develop and realize automatic para-
llelization, which parallelizes a sequential application automatically, to ease this problem.

44

As a traditional method for parallelizing an application, loop-level parallel processing,
which distributes loop iterations in a loop to the processor cores on the system, is often
used. Loop-level parallel processing focuses only on the loops in an application and does
not parallelize the remaining parts. To obtain increased performance from parallel
computer systems, we need to consider the utilization of other types of parallelism in applications.

From the software structure, various elements with various granularities, such as
statements, loops, and function calls, can be recognized. If these various parallelism
granularities are utilized, it is possible to sufficiently extract parallelism and performance
from an application.

Figure 2. Task Scheduling

Source: Based on Fig. 1 in Hayashi et al. (2012).

55

To solve the problems related to the cost of parallelizing an application, we have been
developing an automatic parallelizing compiler system, utilizing the various parallelism
granularities (Hayashi et al., 2012) (Wada et al., 2011) (Shimaoka et al., 2015). This automatic
parallelizing compiler realizes coarse grain task parallel processing, which utilizes
parallelism among the function calls in an application. Figure 6 shows the overall structure
of our parallelizing compiler. This compiler decomposes the input program into coarse
grain tasks and schedule the tasks to process cores on the target processor chip.

In coarse grain task parallel processing, the compiler decomposes the input application
into coarse grain tasks such as basic blocks, loops, and function calls. This decomposition
can be applied hierarchically, considering the structure of the input application. After
coarse grain task decomposition, the compiler can analyze the dependencies among the
tasks. These dependencies determine the tasks that can be executed in parallel and the
order of task execution. In actual implementation, the compiler represents the dependencies
among the coarse grain tasks as a directed acyclic graph (DAG), and utilizes it for task scheduling,
to assign the tasks to the processor cores on the computer system for running the
application. Figure 2 shows an example of task scheduling. In this figure, our compiler
schedules the coarse grain tasks considering the dependencies among them and their
processing costs on each core. Through task decomposition and task scheduling, the
parallelizing compiler can extract parallelism from the input application and completely
utilize the parallelism with the target parallel computer system.

Power/Energy Control with Parallel Processing

Although the primary aim of parallel processing is to improve the performance of
application execution, namely, reducing the execution time of the application, this perfor-
mance improvement with parallel processing reduces and controls the system power
consumption, while executing the application. Current computer systems are equipped
with various functionalities, such as DVFS and power gating, to reduce and control the
power/performance, and parallel processing enables the utilization of such functions.

66

Power Reduction with Parallel Processing

Figure 3. Finding Power Reduction Opportunities

Source: Hayashi et al. (2011).

For embedded systems such as smartphones, automotive systems, and robot controllers,
power consumption reduction is crucial for long battery life, natural air cooling, etc.
Moreover, the applications that run on such systems should meet the deadline for task
completion. Current embedded applications require high performance to realize rich user
experiences, and smooth control of cars and robots. Hence, similar to PCs and high-performance
computing (HPC) systems, embedded systems need to use multiprocessors and multicore
processors. Thus, we need to parallelize embedded applications such that they are
sufficiently fast to meet the given deadline. Parallelizing such applications can enable the
stable operation of the embedded system. In addition, particularly in the case of coarse
grain task parallelization, we can maximize the opportunities for applying DVFS and power
gating in the processors to reduce their power consumption.

77

The dependencies among the coarse grain tasks determine the task-scheduling
optimization by the compiler to obtain higher performance; opportunities to apply DVFS

and power gating can be established, considering the task scheduling result and the given
deadline to complete the application. The most straightforward method to apply such
power reduction is to execute tasks at the maximum processor core frequency, until the
deadline. Another option is to slow down the processor core frequency to meet the given
deadline. Among these strategies, our compiler can apply the most suitable, based on the
characteristics and parallelism of the application (Hayashi et al., 2012). Figure 3 shows an
example of DVFS application. In this figure, we have the given deadline to complete the
program shown as the input task graph, and there is some room to apply DVFS while keeping
the deadline. In this example, we can slow down the operating frequency for Task 3 and 4
without violating the deadline. Also, we can slow down the operating frequency for Task 2
without any influence for other tasks.

In real applications such as audio encoding and image processing, our power reduction
scheme with automatic parallelization resulted in a power reduction of more than 70 [%],
compared to the case without the scheme (Hayashi et al., 2012). If power reduction is not
considered, we can obtain a speedup of more than 16 times with 12 cores on a RP-X
heterogeneous multicore processor by simultaneously utilizing general purpose processor
cores and accelerator cores, compared to sequential execution with a general purpose core.
In simulations involving synthetic applications on a homogeneous multicore processor, we
achieved better power reduction, compared to conventional task scheduling strategies, while
maintaining the given deadline for completing the application (Wada et al., 2015).

Software Framework for Power Management

For HPC, power consumption is one of the significant constraints for scaling the system
performance. Therefore, it is required to improve the system power efficiency to realize
future exascale HPC systems. HPC applications are to be optimized as much as possible for
obtaining better performance; however, this optimization expands the gap between the
given power budget and actual power usage by the HPC system because software optimi-
zation enables more efficient usage of the hardware resources. Hence, hardware overpro-

88

visioning can be the mainstream of HPC systems (Inadomi et al., 2015) (Wada et al., 2018).
Hardware overprovisioned systems employ considerable hardware resources, which cannot
be driven with the given power budget; however, the system software controls the power
and usage of hardware resources such that the budget is not exceeded. With cooperation
between the hardware and system software, the given power budget can be completely
utilized to realize more efficient HPC systems. Such power management is a complicated
process involving the collection and analysis of statistics from both hardware and software,
power allocation and control by the available power-knobs (hardware resources, whose
performance and power can be controlled by software), code instrumentation, etc. on. Due
to the numerous hardware components, it would become more complicated to manage the
power consumption in future HPC systems. Hence, one of the most important research
issues is the development of a power management framework that enables more efficient
power consumption and distribution.

Figure 4. Power Performance Management Software Framework

Source: Based on Fig. 2 in Wada et al. (2018).

99

Currently, we are developing a software framework to automate the power management
process in HPC systems (Wada et al., 2018) (Wada, 2017). In this framework, we aim to
provide a simple user interface, standard structure and design pattern for developing libraries
to control the power-knobs, and easy-to-use and straightforward domain specific language (DSL)
for developing power-performance models to optimize power allocation among the
hardware resources in a system.

Figure 4 shows the power management workflow with our software framework. Our
power management framework is equipped with a simple DSL compiler, which generates
several scripts:

a) A script to gather information on the hardware resources in the target system.

b) A script to generate the profile data of the input application.

c) A script to run the application under the power management strategy described in the input DSL
source code.

Users can obtain power-performance optimized application execution by running
these scripts. In addition, our framework instruments API calls into the input application
source code to control the power knobs at runtime, according to the decision made based
on the power-performance model defined by the DSL. Using the earlier version of our
power management software framework, we had succeeded in realizing an easy and
straightforward method for controlling the power consumption of application execution,
under simple power-performance models.

Currently, we are actively developing the next version of the framework to include more
complicated power-performance models, and power management strategies with simpler
interfaces (Wada, 2017).

1010

Towards Smart Cities

To create smarter cities with respect to computer systems, one of the essential aspects is
their energy efficiency, as previously described. Additionally, higher performance must be
realized not only with benchmark applications but also with “real” applications. In this
section, we present examples of the acceleration of certain real applications, and our
ongoing research project for managing the performance and power consumption for
various scales of computer systems, including virtualized systems such as cloud platforms.

Optimizing Real Applications

The evaluation and improvement of computer system performance with benchmark
programs is necessary to investigate and develop better computer systems; however,
applications for solving real social problems include various characteristics, and the
applicability of our parallel processing and power reduction/management methods need
to be extended to handle such applications. In the realization of smarter cities, traffic and
disaster problems are inevitable. Hence, we have parallelized and optimized some
applications in these areas.

The first example of a real application is traffic optimization (Samra et al., 2015)
(Sen and Head, 1997). Optimization of traffic signal control is adequate for avoiding traffic
jams and can contribute to resource saving as well. Furthermore, appropriate traffic
signal control can assist in saving human lives by preventing traffic accidents. In our pre-
vious research, we had developed a parallel algorithm for traffic signal control and had
obtained a performance of order O(n), even though the performance of the original algo-
rithm that employed a dynamic programming method was of order O(n2). Although
additional effort is still required to realize real-time optimized traffic control with multiple
intersections, this parallelization and improvement can contribute to various applications
for smarter cities.

1111

Another challenging example is earthquake simulation (Shimaoka et al., 2015). In Japan
and Mexico, earthquakes and tsunamis are the most severe disasters that require counter-
measures. If we can realize “super-realtime” earthquake simulation with parallel proces-
sing, an alert system can be realized such that people can be evacuated in time. We applied
our coarse grain task parallel processing in an earthquake simulator, GMS, developed by
NIED (GMS: Ground Motion Simulator, n.d.), and achieved a speed up of approximately
x100, with 128 processor cores, compared to the sequential execution on an IBM server with
POWER8 chips. This scalable performance improvement with coarse grain task paralleli-
zation can contribute toward the realization of safer and smarter cities.

Towards Computer Systems for Sustainable Cities

As described in the previous sections, our parallel processing and power reduction
strategies can achieve effective performance and power reduction in various parallel
computing systems. However, the most power consuming computer system is the cloud
environment, for which the power consumption needs to be managed. Different from
typical computer systems, cloud platforms rely on virtualization techniques. Hence, it is
not easy to apply DVFS and power gating in such an environment because various virtual
machines can run on the same physical hardware. This situation renders it difficult to find
opportunities to apply DVFS and power gating, and our existing parallel processing and
power reduction schemes cannot be applied as such.

Thus, we are developing a new software environment to connect a compiler that analyzes
the individual application and the cloud platform, which manages the virtual machines
and underlying hardware. By orchestrating various scales/types of systems, including IoT
devices, PCs, servers, and supercomputers, we can contribute to the realization of smarter
and sustainable societies.

1212

Conclusions

Our research efforts and ongoing research projects were surveyed and summarized in this
paper. The main focus of this research was to achieve adequate computer system perfor-
mance by applying parallel processing techniques. The utilization of various types (granu-
larities) of parallelism in applications is the key in our parallel processing techniques, and
considerable effort has been made in realizing an automatic parallelizing compiler to easily
generate parallel applications. With coarse grain task parallel processing in particular,
opportunities can be extracted to not only achieve fast execution time of the input application
but also to apply DVFS and power gating for optimizing the power/energy consumption of
computer systems in running the application.

In our ongoing research projects related to power/energy efficient computer systems,
we are mainly focusing on the development of a software framework to provide an
easy-to-use and productive power management environment for HPC systems, and for
applying our power reduction/optimization strategies in virtualized systems, such as cloud
platforms. These projects can contribute toward realizing smarter and sustainable cities,
from the telecommunications, information, and communication technology (ICT) point of
view.

Acknowledgements

This work was partially supported by JSPS KAKENHI, Grant Numbers: 24700055 and
17K12665, and by the Japan Science and Technology Agency (JST) CREST program for the
research project, “Power Management Framework for Post-Petascale Supercomputers”. The
author would like to thank all the collaborators in the research projects mentioned in this
paper for their kind support and fruitful discussions.

1313

References

Ground Motion Simulator (GMS). (n.d.), “GMS: Ground Motion Simulator”. Available:

http://www.gms.bosai.go.jp/GMS/

Hayashi, A. et. al. (2011), “Parallelizing Compiler Framework and API for Power Reduction

and Software Productivity of Real-Time Heterogeneous Multicores”. In: Cooper K. et.

al.(eds) Languages and Compilers for Parallel Computing. LCPC 2010. Lecture Notes in

Computer Science, vol. 6548. Springer.

Hayashi, A. et. al. (2012), “Parallelizing Compiler Framework and API for Heterogeneous

Multicores”, IPSJ Transactions on Advanced Computing Systems [in Japanese], vol. 5, no.

1, pp. 68-79.

Inadomi, Y. et. al. (2015), “Analyzing and Mitigating the Impact of Manufacturing

Variability in Power-Constrained Supercomputing”, in the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC’15).

Samra, S. et. al. (2015), “A Linear Time and Space Algorithm for Optimal Traffic-Signal

Duration at an Intersection”, IEEE Transactions on Intelligent Transportation Systems,

vol. 16, no. 1, pp. 387-395.

Sen, S. and Head, K. L. (1997), “Controlled Optimization of Phases at an Intersection,”

Transportation Science, vol. 31, no. 1, pp. 5-17.

Shimaoka, M. et. al. (2015), “Coarse Grain Task Parallelization of Earthquake Simulator

GMS Using OSCAR Compiler on Various cc-NUMA Servers”, in The 25th International

Workshop on Languages and Compilers for Parallel Computing.

Wada Y. (2018), “Toward Software-Hardware Cooperative Systems for Energy Efficiency

with Virtualization Platforms”, in Exhibition, The International Conference for High

Performance Computing, Networking, Storage, and Analysis (SC18).

Wada, Y. (2017), “PomPP Library and Tools”. GitHub. Available: https://github.com/

pompp/pompp_tools

1414

Wada, Y. et. al. (2011), “A Parallelizing Compiler Cooperative Heterogeneous Multicore

Processor Architecture”, Transactions on High-Performance Embedded Architectures

and Compilers IV, pp. 215-233.

Wada, Y. et. al. (2015), “Energy-aware Task Scheduling for a Manycore Processor with

Coarse Grain Voltage Domains”, IPSJ Transactions on Advanced Computing Systems [in

Japanese], vol. 8, no. 1, pp. 34-50.

Wada, Y. et. al. (2018), “A Power Management Framework with Simple DSL for Automatic

Power-Performance Optimization on Power-Constrained HPC Systems”, Springer

International Publishing.

